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We study the quantum mechanical properties of one of the simplest geometrical elements: a parabolic
reflector. We study the quantum propagation problem in a two-dimensional mirror, appropriate for electrons on
the surface of metals, providing explicit closed solutions for the particle wave functions and the corresponding
energy dispersion. Knowledge of nodal lines and distributions highlights the importance of “silent” and “loud”
regions where quantum amplitude would be small or large. We further analyze the effects of quantum focusing
and reflection for an initial pulse originating at the focus of the parabolic reflector. We find two propagation
fronts that persist at long times and away from the focus of the parabola; the reflected front has higher
amplitude and exhibits a nearly flat distribution moving at constant speed along the focal axis, reminiscent of
a typical optical mirror wave front.
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The study of quantum coherent propagation in time and/or
space is receiving increasing attention in a variety of differ-
ent experimental systems. The impressive control and ma-
nipulation of single and multiple electron spins,1 or cold
atomic condensates near surface deflectors and mirrors,2 are
accompanied by beautiful studies of quantum interference
and standing wave patterns on metallic surfaces.3–5 The
availability and continuous development of scanning tunnel-
ing microscopes �STM�, capable not only of imaging but of
manipulating atomic and molecular complexes,6 have opened
up tantalizing possibilities for the study and control of such
systems. The fundamental and technological interest in the
control, detection, coherence, and tuning of electronic states
has resulted in interesting experimental developments, in-
cluding the recent extraction of phase information from STM
images.7 Indeed, single- and multiple-channel information
transfer at the nanometer scale has been proposed on quan-
tum corral systems,8 which one could envision using in com-
bination with the computation capabilities of molecular-
cascade structures,9 for example.

In this rich context, we present here the development of a
rigorous mathematical solution to the eigenstate problem of a
quantum parabolic mirror that one could implement on the
surface of metals and fully characterize and study utilizing
STM techniques. Unlike the discrete spectrum of a quantum
corral,10 the energy spectrum in the space bounded by a para-
bolic reflector forms a continuum, with peculiar symmetry
and degeneracy properties. More interesting, it is clear that
this system could become an important element in the trans-
mission of electronic wave packets, and has great potential
for additional theoretical and experimental work. As a promi-
nent example of the dynamical features of this geometry, Fig.
1 shows the wave packet propagation obtained for an ini-
tially well-localized pulse at the focus of the parabola. The
time evolution is easily obtained from the full description of
the system, which yields a set of definite-symmetry eigen-
states. Utilizing these eigenstates we demonstrate �see Eq.
�5� below� that the evolution of the intensity distribution of
the initial delta pulse starting at the focus of the reflector has

well-defined anterior and posterior wave fronts �Fig. 1�. The
long-time wave packet develops into a nearly flat wave front
that propagates at near constant speed along the focal line, as
one could anticipate from the classical light propagation in a
parabolic mirror geometry.

The system of interest consists of a two-dimensional �2D�
parabolic shaped wall on a substrate �see inset in Fig. 2�,
with an axis of symmetry which results in wave functions

T= 0.0

T= 0.5 T= 1.0 T= 2.0

T= 3.0 T= 4.0 T= 5.0

FIG. 1. �Color online� Evolution in a parabolic reflector of an
electronic wave packet after a delta emission at the focus at t=0
�upper plot�. The normalized probability density ���r , t��2�0

8 /2 is
shown at different times T �measured in units of �=�0

4m /�, see text
below�. Notice flat wave front develops at long T traveling at con-
stant speed to the right.
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exhibiting definite �even or odd� inversion symmetry with
respect to the confocal axis, as we show below. The system
is assumed to be defined on a metallic surface, so that the
motion in the direction normal to the substrate is energeti-
cally forbidden. The 2D surface states of this metal can be
seen as an electron gas, appropriately described by an effec-
tive mass with isotropic energy dispersion from the bottom
of the band minimum given by E=�2k2 /2m �k is the two-
dimensional wave vector�. The problem is conveniently for-
mulated in parabolic coordinates � ,�: the quantum reflector
is limited to the interior of the parabola, shown in the inset of
Fig. 2, with the focus located at the Cartesian coordinate
origin �x ,y=0,0�, and with focal length �0

2 /2. The 2D quan-
tum problem is described by the Schrödinger equation in
parabolic coordinates �for a detailed description see Ref. 10�.
The wave function on the 2D space confined within the re-
flector domain must fulfill the �hard wall� boundary condi-
tions, ��� ,��=0 at �= ��0. This condition leaves un-
bounded the motion along the � coordinate; in consequence,
the energy spectrum will be continuous and extended from
zero to infinity. Meanwhile, motion along the � coordinate is
confined to ���	�0, resulting in the appearance of a discrete
quantum number, which we label an �see below�. Hence, for
a given value of energy E we have an infinite number of
states for different an, and an infinitely degenerate spectrum.
Since the Hamiltonian is invariant under inversion with re-
spect to the focal axis,10 i.e., �→−�, the wave function
��� ,�� can be chosen as symmetric or antisymmetric on the
� coordinate. The bounded general solutions for the even
�e� and odd �o� states are given by �n,k

e�o��� ,��
=Nn,kGe�o��an ,�2k�Fe�o��an ,�2k�, where

Ge�o� = e−i�2k/2
e�o�F��e�o� + ian

4
,
�e�o�

2
,i�2k� , �1�

where, F�� ,
 ,z� is the confluent hypergeometric function,

e�o�=1���k�, �e�o�=1�3�, Nn,k is the normalization factor,
and an is the separation constant determined by the boundary
conditions. The functions G and F are related through the
equation Fe�o��an ,z�=Ge�o��−an ,z�. The hard wall boundary
conditions are reduced to Ge�a2j ,�0

2k�=0, and
Go�a2j+1 ,�0

2k�=0, where the symmetric �antisymmetric�
states are characterized by the even �odd� index n=2j �2j
+1� with j=0,1 ,2. . .. These equations provide two sets of
independent parametric curves for a�k� for the states as a
function of the wave number k. As we stated above, the
spectrum is continuous and the functions �n,k have to be
normalized in the “k scale.” The normalization constant for
�n,k can be written in closed analytical form as, �0Nn,k
=Nn,� where

Nn,�
�s� =

����1/4exp�−
�an

8
�

�025/4�

	���s + ian

4
�	

�Is���
, �2�

�=�0
2k /2 is the dimensionless wave number, s=e, o, and

Is = 

0

1

�8�1−�s�	F��s + ian

4
,
�s

2
,i2��2�	2

d� . �3�

Figure 2 shows the variation in the first 13 an eigenvalues
as function of the dimensionless wave number �=�0

2k /2. It
is important to remark that the results in Fig. 2 present the
general solution for any � �as it is scaled in terms of �0�. It
can be seen that an decreases monotonically as � increases,
and that lim�→0 an=�. Notice that, as mentioned before, the
spectrum of the system is infinitely degenerate at a given
value of the energy E �� fixed�, i.e., there are infinite eigen-
states with different values of an for the same � value. Using
the properties of the confluent hypergeometric function
F�� ,
 ,z�, and its asymptotic behavior for z→�, it is pos-
sible to show that lim�→� an=−�, ∀n, and lim�→��a2j
−a2j+1�=0, j=0,1 ,2. . .. Figure 2 indicates the latter charac-
teristic of the spectrum, the accidental degeneracy for
�→� of consecutive an levels with different parity �n=2j
and n=2j+1�. The minimal value of � beyond which a2n
�a2n+1, �n, depends on the two levels under consideration;
higher values of n result in larger values of �n. Different
parity eigenfunctions are shown in Fig. 3 for different � val-
ues. It is clear that the pattern of nodes and antinodes

FIG. 2. Quantum reflector eigenvalues, �=�0
2k /2, for different

reflector quantum numbers an. Arrows indicate �n values beyond
which an accidental degeneracy occurs between adjacent quantum
numbers an. Inset: Cartesian representation of two-dimensional
parabolic coordinates with ��1�	 ��2�	 . . . and �1	�2	 . . .. The
domain of the quantum reflector is shaded and defined as the inte-
rior problem with boundaries at �= ��0 and 0	�	�.

an=1
n = 0 n =1

FIG. 3. �Color online� Two calculated wave function maps of
the quantum reflector. States with a0=1 and a1=1 ���1 and 2,
respectively� are represented.
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changes for different value of the parameter an.
Figure 4 shows contour plots for the eigenfunctions

�n,k�� ,�� for n=0, 1, 2, 3, for three different values of the
parameter an. It is interesting that the wave function maps
display a fanlike pattern on both sides of the focal axis. No-
tice that higher n values for an=const result in larger number
of nodes and antinodes along lines of constant � �as � or k
increase with n as well and the state wavelength gets
smaller�. In contrast, increasing the value of an for a given n
results in fewer nodal lines, as k �or �� is smaller, and the
wavelength is larger. Note that the valleys along �=const
curves arise from the condition Fe�o��an ,�2k�=0. The parity
of the states, as defined by the index n, can be clearly iden-
tified in the reflection symmetry of the nodal peaks and val-
leys with respect to the focal axis. Every odd state displays a
node at �=0 that coincides with the focal axis for positive
values of the Cartesian coordinate x, while for even states
evidently, �n,k

e �0,0��0.
There is an interesting effect of “mimicry” between even

and odd states for high � values. As noted in Fig. 2, adjacent
levels n=2j and n=2j+1 show degeneracy for large � �or
energy�, which is reflected in the topology of the wave func-
tion. In Fig. 4, one can see that the states with an=−2 for
n=0 and 2 acquire a profile that resembles the states n=1
and 3, respectively. In fact, all even states develop an appar-

ent valley at the focal line, when the parameter a decreases
toward more negative values ��→��. This extra valley is in
fact a “false” valley, as indicated in Fig. 4, with only a local
minimum at �=0. To clarify the nature of these valleys, the
evolution of the wave function with an is displayed in Fig. 5.
We plot the probability density profile characterized by the
even, �Ge�a0 ,�2k��2, and odd, �Go�a1 ,�2k��2, function char-
acterizing the wave function profiles at �=const. At a0=−1
the probability density �Ge�a0 ,�2k��2 shows a profile qualita-
tively similar to �Go�a1 ,�2k��2 �displayed in the inset�, al-
though the amplitude on the focal line ��=0� is nonzero for
Ge. In fact, one can verify that the wave function �n,k

e �0,0�
=Nn,k

e decreases as the energy parameter � grows �see Eq.
�2��, explaining the appearance of the relatively low-
amplitude “false” valley associated with the quasidegeneracy
reported in Fig. 2.

The quantum mechanical properties of the parabolic re-
flectors have potential applications in the control of elec-
tronic pulse propagation in these systems. Let us consider the
particle “emission” of a well-localized pulse at the focus of
the parabola at t=0. Hence, the particle wave function pre-
sents the form ��r ,0�=��r�, and the quantum mechanical
state evolves in time according to

��r,t� = 

n

 gn,k�n,k��,��exp�− i

Ekt

�
�dk , �4�

where gn,k is the weight function defined by the initial con-
dition. Using the relation ��r��D� x,y

�,� ��=��������, where
�D� x,y

�,� �� is the Jacobian of the transformation to parabolic
coordinates, on can write the time dependence of the dimen-
sionless probability density of the emitted pulse as

an=-2 an=0 an=1

n=0

n=1

n=2

n=3

“false” valley

FIG. 4. �Color online� Contour plots of wave function
�n,k�� ,�� for different values of the quantum number an. States
with even �odd� n are symmetric �antisymmetric� under reflection
with respect to the focal line. Low-amplitude false valleys in even
states for an=−2 are indicated by arrows.

FIG. 5. Profile of �Ge�a0 ,�2k��2 for various values of the pa-
rameter a0 in the range �−1,0.75�. In the inset, the profile of the odd
wave function for a1=−1.
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with T= t /� and �=�0
4m /� being the unit of time.

Figure 1 depicts the time dependence of the probability
density ���r , t��2. A scale of the intensity distribution at T
=0 is given in the upper panel of the figure. One can clearly
see a spreading wave with two well-defined fronts, anterior,
and posterior. Soon after the initial pulse, T	0.5, the pulse
spreads nearly circularly, as one would expect of an unbound
geometry. As the propagating front is reflected by the mirror,
T�1, anterior and posterior fronts are located to the right
and to the left of the focus of the reflector. The posterior
front is strongly distorted by the boundary of the reflector
and it starts to reverse its motion. At T=2 the posterior front
has completely reversed its direction and continues moving
to the right in the figure. The anterior front corresponds es-
sentially to an outgoing scattering wave in 2D, which has
smaller amplitude as it spreads on the domain surface de-
fined by the parabolic reflector. The shape of this front re-
sembles a confocal parabola and is well defined at each time
T by the equation �=const. �where the constant increases
with T�. Notice that for longer T��4�, the anterior front has
most of the intensity and shows an essentially flat profile
perpendicular to the focal line. This wave front moves with
nearly constant speed, and it is reminiscent of the front that
one would expect propagating in a classical mirror �although
a strong modulation along the front is evident, arising from
the quantum nature of this “beam”�. We should notice that
the time reversibility of the Schrödinger equation guarantees

that an incident flat wave front parallel to the focal axis will
be reflected into the focus. These properties may find inter-
esting uses in pulse control and measurement.8

In summary, we have studied a parabolic quantum reflec-
tor as a possible tool for the propagation of wave packets and
carefully characterized its eigenstates. The propagation of a
particle in a two-dimensional substrate near the parabolic
mirror involves “silent” zones with very small probability
amplitude, identified with nodal lines on the eigenstates. The
propagation of an incoming wave packet with general char-
acteristics moving on the surface can be formulated in terms
of the eigenstates introduced here, in order to describe the
scattering process in this quantum parabolic reflector. The
extent to which this system can be exploited for recording or
transmission information is greatly facilitated by STM devel-
opments on imaging and manipulation. Although mirrors in
those systems are not the perfect reflectors we assume, our
analytical solutions provide valuable direct insights that can
be further refined by numerical methods when realistic mir-
rors are studied. We are enthusiastic about future develop-
ments in these systems.
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